Physical characteristics:
Shark skeletons are very different from those of bony fish and terrestrial vertebrates. Sharks and other cartilaginous fish (skates and rays) have skeletons made of cartilage and connective tissue. Cartilage is flexible and durable, yet has about half the density of bone. This reduces the skeleton’s weight, saving energy. Sharks have no rib cage and therefore on land a shark's own weight can literally crush it.Jaw
Like its relatives, rays and skates, the shark's jaw is not attached to the cranium. The jaw's surface, like the shark's vertebrae and gill arches, needs extra support due to its heavier exposure to physical stress and its need for strength. It has a layer of tiny hexagonal plates called "tesserae", which are crystal blocks of calcium salts arranged as a mosaic. This gives these areas much of the same strength found in the real bony tissue found in other animals. Generally there is only one layer of tesserae in sharks, but the jaws of large specimens, such as the bull shark, tiger shark, and the great white shark, have two to three layers or more, depending on body size. The jaws of a large white shark may have up to five layers. In the rostrum (snout), the cartilage can be spongy and flexible to absorb the power of impacts. Teeth
Main article: Shark teeth The teeth of sharks are embedded in the gums rather than directly fixed to the jaw, and are constantly replaced throughout the shark's life. Multiple rows of replacement teeth are grown in a groove on the inside of the jaw and moved forward in a "conveyor belt"; some sharks lose 30,000 or more teeth in their lifetime. The rate of tooth replacement varies from once every 8–10 days to several months. In most species teeth are replaced one at a time, while in the cookiecutter sharks the entire row of teeth is replaced simultaneously. The shape of a shark's tooth depends on its diet: those that feed on mollusks and crustaceans have dense flattened teeth for crushing, those that feed on fish have needle-like teeth for gripping, and those that feed on larger prey such as mammals have pointed lower teeth for gripping and triangular upper teeth with serrated edges for cutting. The teeth of plankton-feeders such as the basking shark are greatly reduced and non-functional.Fins
The fin skeletons are elongated and supported with soft and unsegmented rays named ceratotrichia, filaments of elastic protein resembling the horny keratin in hair and feathers. Sharks can only drift away from objects directly in front of them because their fins do not allow them to swim backwards.
Dermal denticles
Main article: Dermal denticle Unlike bony fish, sharks have a complex dermal corset made of flexible collagenous fibers and arranged as a helical network surrounding their body. This works as an outer skeleton, providing attachment for their swimming muscles and thus saving energy. In the past, sharkskin has been used as sandpaper. Their dermal teeth give them hydrodynamic advantages as they reduce turbulence when swimming.Tails
Sharks have very distinctive tails. The tails (caudal fins) of sharks vary considerably between species and are adapted to the lifestyle of the shark. The tail provides thrust and so speed and acceleration are dependent on tail shape. Different tail shapes have evolved in sharks adapted for different environments. Sharks possess a heterocercal caudal fin in which the dorsal portion is usually noticeably larger than the ventral portion. This is due to the fact that the shark's vertebral column extends into that dorsal portion, allowing for a greater surface area for muscle attachment which would then be used for more efficient locomotion among the negatively buoyant cartilaginous fishes. This is in contrast to most bony fishes, which possess a homocercal caudal fin.
The tiger shark's tail has a large upper lobe which delivers the maximum amount of power for slow cruising or sudden bursts of speed. The tiger shark must be able to twist and turn in the water easily when hunting to support its varied diet, whereas the porbeagle, which hunts schooling fish such as mackerel and herring has a large lower lobe to help it keep pace with its fast-swimming prey. Some tail adaptations have other purposes. The thresher feeds on fish and squid, which it herds and stuns with its
The tiger shark's tail has a large upper lobe which delivers the maximum amount of power for slow cruising or sudden bursts of speed. The tiger shark must be able to twist and turn in the water easily when hunting to support its varied diet, whereas the porbeagle, which hunts schooling fish such as mackerel and herring has a large lower lobe to help it keep pace with its fast-swimming prey. Some tail adaptations have other purposes. The thresher feeds on fish and squid, which it herds and stuns with its
Physiology
Buoyancy
Unlike bony fish, sharks do not have gas-filled swim bladders for buoyancy. Instead, sharks rely on a large liver, filled with oil that contains squalene and the fact that cartilage is about half as dense as bone. The liver constitutes up to 30% of their body mass. The liver's effectiveness is limited, so sharks employ dynamic lift to maintain depth and then sink when they stop swimming. Sand tiger sharks are also known to store air in their stomachs, using the stomach as a swim bladder. Most sharks need to constantly swim in order to breathe and cannot sleep very long, if at all, or they will sink. However certain shark species, like the nurse shark, are capable of pumping water across their gills, allowing them to rest on the ocean bottom.Some sharks, if inverted or stroked on the nose, enter a natural state of tonic immobility. Researchers can use this condition to handle sharks safely.
Respiration
Like other fish, sharks extract oxygen from seawater as it passes over their gills. Unlike other fish, shark gill slits are not covered, but lie in a row behind the head. A modified slit called a spiracle lies just behind the eye; the spiracle assists water intake during respiration and plays a major role in bottom dwelling sharks. Spiracles are reduced or missing in active pelagic sharks. While the shark is moving, water passes through the mouth and over the gills in a process known as "ram ventilation". While at rest, most sharks pump water over their gills to ensure a constant supply of oxygenated water. A small number of species have lost the ability to pump water through their gills and must swim without rest. These species are obligate ram ventilators and would presumably asphyxiate if unable to move. Obligate ram ventilation is also true of some pelagic bony fish species.The respiration and circulation process begins when deoxygenated blood travels to the shark's two-chambered heart. Here the shark pumps blood to its gills via the ventral aorta artery where it branches off into afferent brachial arteries. Reoxygenation takes place in the gills and the reoxygenated blood flows into the efferent brachial arteries, which come together to form the dorsal aorta. The blood flows from the dorsal aorta throughout the body. The deoxygenated blood from the body then flows through the posterior cardinal veins and enters the posterior cardinal sinuses. From there blood enters the heart ventricle and the cycle repeats.
Thermoregulation
Most sharks are "cold-blooded", or more precisely poikilothermic, meaning that their internal body temperature matches that of their ambient environment. Members of the family Lamnidae, such as the shortfin mako shark and the great white shark, are homeothermic and maintain a higher body temperature than the surrounding water. In these sharks, a strip of aerobic red muscle located near the center of the body generates the heat, which the body retains via a countercurrent exchange mechanism by a system of blood vessels called the rete mirabile ("miraculous net"). The common thresher shark has a similar mechanism for maintaining an elevated body temperature, which is thought to have evolved independently.Osmoregulation
In contrast to bony fish, with the exception of the Coelacanth, the blood and other tissue of sharks and Chondrichthyes in general is isotonic to their marine environments because of the high concentration of urea and trimethylamine N-oxide (TMAO), allowing them to be in osmotic balance with the seawater. This adaptation prevents most sharks from surviving in fresh water, and they are therefore confined to marine environments. A few exceptions to this rule exist, such as the bull shark which has developed a way to change its kidney function to excrete large amounts of urea. When a shark dies the urea is broken down to ammonia by bacteria — because of this, the dead body will gradually start to smell strongly of ammonia.
Senses
Smell
Sharks have keen olfactory senses, located in the short duct (which is not fused, unlike bony fish) between the anterior and posterior nasal openings, with some species able to detect as little as one part per million of blood in seawater. They are more attracted to the chemicals found in the guts of many species, and as a result often linger near or in sewage outfalls. Some species, such as nurse sharks, have external barbels that greatly increase their ability to sense prey.Sight
Shark eyes are similar to the eyes of other vertebrates, including similar lenses, corneas and retinas, though their eyesight is well adapted to the marine environment with the help of a tissue called tapetum lucidum. This means that sharks can contract and dilate their pupils, like humans, something no teleost fish can do. This tissue is behind the retina and reflects light back to it, thereby increasing visibility in the dark waters. The effectiveness of the tissue varies, with some sharks having stronger nocturnal adaptations. Sharks have eyelids, but they do not blink because the surrounding water cleans their eyes. To protect their eyes some species have nictitating membranes. This membrane covers the eyes during predation, and when the shark is being attacked. However, some species, including the great white shark (Carcharodon carcharias), do not have this membrane, but instead roll their eyes backwards to protect them when striking prey. The importance of sight in shark hunting behavior is debated. Some believe that electro- and chemoreception are more significant, while others point to the nictating membrane as evidence that sight is important. Presumably, the shark would not protect its eyes were they unimportant. The use of sight probably varies with species and water conditions. In effect the shark's field of vision can swap between monocular and stereoscopic at any time.Hearing
Although it is hard to test sharks' hearing, they may have a sharp sense of hearing and can possibly hear prey many miles away. A small opening on each side of their heads (not to be confused with the spiracle) leads directly into the inner ear through a thin channel. The lateral line shows a similar arrangement, which is open to the environment via a series of openings called lateral line pores. This is a reminder of the common origin of these two vibration- and sound-detecting organs that are grouped together as the acoustico-lateralis system. In bony fish and tetrapods the external opening into the inner ear has been lost.Source:http://en.wikipedia.org/wiki/Shark
0 comments:
Post a Comment